9 research outputs found

    Brugia malayi Gene Expression in Response to the Targeting of the Wolbachia Endosymbiont by Tetracycline Treatment

    Get PDF
    Filarial parasites afflict hundreds of millions of individuals worldwide, and cause significant public health problems in many of the poorest countries in the world. Most of the human filarial parasite species, including Brugia malayi, harbor endosymbiotic bacteria of the genus Wolbachia. Elimination of the endosymbiont leads to sterilization of the adult female worm. The need exists for the development of new chemotherapeutic approaches that can practically exploit the vulnerability of the filaria to the loss of the Wolbachia. In this study we performed ultrastructural and microarray analyses of female worms collected from infected jirds treated with tetracycline. Results suggest that the endosymbiotic bacteria were specifically affected by the antibiotic. Furthermore, in response to the targeting of the endosymbiont, the parasites modulated expression of their genes. When exposed to tetracycline, the parasites over-expressed genes involved in protein synthesis. Expression of genes involved in cuticle biosynthesis and energy metabolism was, on the other hand, limited

    Krüppel-like family of transcription factors: an emerging new frontier in fat biology

    No full text
    <p>In mammals, adipose tissue stores energy in the form of fat. The ability to regulate fat storage is essential for the growth, development and reproduction of most animals, thus any abnormalities caused by excess fat accumulation can result in pathological conditions which are linked to several interrelated diseases, such as cardiovascular diseases, diabetes, and obesity. In recent years significant effort has been applied to understand basic mechanism of fat accumulation in mammalian system. Work in mouse has shown that the family of Kr&#252;ppel-like factors (KLFs), a conserved and important class of transcription factors, regulates adipocyte differentiation in mammals. However, how fat storage is coordinated in response to positive and negative feedback signals is still poorly understood. To address mechanisms underlying fat storage we have studied two <i>Caenorhabditis elegans</i> KLFs and demonstrate that both worm<i> klfs </i>are key regulators of fat metabolism in <i>C. elegans</i>. These results provide the first <i>in vivo</i> evidence supporting essential regulatory roles for KLFs in fat metabolism in <i>C. elegans</i> and shed light on the human counterpart in disease-gene association. This finding allows us to pursue a more comprehensive approach to understand fat biology and provides an opportunity to learn about the cascade of events that regulate KLF activation, repression and interaction with other factors in exerting its biological function at an organismal level. In this review, we provide an overview of the most current information on the key regulatory components in fat biology, synthesize the diverse literature, pose new questions, and propose a new model organism for understanding fat biology using KLFs as the central theme.</p
    corecore